
GenCodex - A Novel Algorithm for Compressing
DNA sequences on Multi-cores and GPUs

D Satyanvesh∗, Kaliuday Balleda∗, Ajith Padyana, P K Baruah
Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India

{satyanvesh.d, kaliudayballeda}@gmail.com, {ajithpadyana, pkbaruah}@sssihl.edu.in

Abstract—The DNA sequences are huge in size and the
databases are growing at an exponential rate. For example,
the human genome in raw format ranges from 2 to 30
Tera-bytes. The main reason for this is the invention of
new species and increasing number of DNA profiles. The
growth of the DNA affects the storage as well as bandwidth
when these sequences need to be transferred. Applications
such as DNA profiling, Real time DNA crime investiga-
tion require access to the DNA sequences in real time.
The inherent property of DNA is that it contains many
repeats which makes it highly compressible. However, the
applications mentioned not only require good compression
ratio but also needs faster compression. Multi-cores and
GPUs can be used to perform the compression quickly.
In this paper, we propose a new algorithm with a focus
on the throughput along with the compression ratio. The
algorithm scales well on GPUs and achieves a speedup of
11 on multi-cores and upto 23 on GPUs.

Index Terms—DNA Sequence, Bandwidth, Throughput,
Compression Ratio.

I. INTRODUCTION

In molecular biology, the genome consists of all
the hereditary information for running and maintaining
an organism. This biological information contained in
genome is encoded in the form of DNA. DNA chain is
made of four bases: Adenine (A), Guanine (G), Thymine
(T), and Cytosine (C). When the cells divide to grow,
every new cell needs a copy of the DNA to function
properly. So, DNA replicates itself before the cell di-
vides. Due to this, the genomic data increases constantly
which leads to doubling of the DNA sequences. DNA
also has many repeats. This property can be used to
compress the data.

General purpose compression algorithms such as gzip,
bzip2 do not work well for the DNA sequences since
it consists of only 4 bases namely A, T, G and C. As
a result, these algorithms expanded the DNA sequence
instead of compressing it [1]. Other algorithms such

∗Student Author

as Biocompress-2 [2], GenCompress [3], DNACompress
[4], DNABIT [5] and GENBIT[6] have been used in the
recent years to compress the DNA sequences.

An important piece of information contained in DNA
sequence is tandem repeats. But all the algorithms take
quadratic or more amount of time for searching those
tandem repeats in a huge DNA sequence [7]. Appli-
cations such as DNA profiling, Real time DNA crime
investigation require access to the DNA sequences in
real time. So, the compression must be very quick.
The challenging problem is to achieve high throughput
along with a better compression ratio. In this paper, we
address these issues by obtaining a better compression
ratio at a high throughput by using graphical processing
units(GPUs) and multi-cores.

The rest of the paper is organized as follows: In sec-
tion 2, we briefly discuss the related work. In section 3,
we discuss the details of our proposed algorithm. Section
4 gives the implementation details of our algorithm.
Section 5 describes the experimental setup. Section 6
discusses the results. Conclusion and future work are
dealt in section 7.

II. RELATED WORK

Grumbach and Tahi [2] proposed two lossless com-
pression algorithms for DNA sequences, namely Bio-
Compress and BioCompress-2, making use of the Ziv
and Lempel data compression method [8]. BioCompress-
2 finds both the exact and reverse repeats in the target
sequence. It encodes them by repeat length and the
position of a previous repeat occurrence. If there is no
significant repetition then the arithmetic coding of order-
2 is used to reduce the number of bits used. The only
difference between BioCompress and BioCompress-2 is
the use of arithmetic coding.

Gencompress [3] is a one-pass algorithm that searches
for the approximate matches. This algorithm uses order-
2 arithmetic encoding [1]. Gencompress detects the
approximate complemented palindrome (A replaced by



T and C replaced by G) in DNA sequences. The average
compression ratio is 1.7428 bits/bytes. Gencompress [3]
achieves higher compression ratios compared to Biocom-
press or Biocompress-2.

DNACompress [4] uses Lempel-Ziv compression
scheme. It finds all the approximate repeats including
complemented palindromes and encodes approximate
repeat regions and non-repeat regions. The average com-
pression ratio is 1.7254 bits/bytes.

GENBIT Compress algorithm [6] uses a little different
method in which each input sequence is divided into
fragments of 4 characters each. Hence each fragment
can be encoded in 8 bits as each character is represented
using 2 bits. If the consecutive fragments are same,
then the specific 9th bit is set to 1. If the consecutive
fragments are different, then the specific 9th bit is set
to 0 for that 8 bit unique representation. The average
compression ratio for this algorithm is 1.727 bits/bytes.

The literature shows that the existing algorithms con-
centrate mainly on compression ratio whereas the pro-
posed algorithm and its parallel implementation not only
achieves decent compression ratio but also has a better
compress throughput.

III. PROPOSED ALGORITHM

Our method is efficient in compressing both repetitive
and non-repetitive DNA sequences. The input sequence
is divided into fragments of 4 characters each.

In the first phase, each character is represented using
two bits namely, A=00, C=01, G=10, T=11. So each
fragment is stored using 8 bits i.e., using just one byte.
At the end of this phase, we get the compressed sequence
where 4 characters of the original sequence are encoded
into a single byte.

In the next phase, the fragments are represented using
either one or two bytes. If a fragment is not appearing
consecutively, then a single byte is allocated using its
8-bit unique representation. If a fragment is repeating
two or more times, then the simple 8-bit representation
is put in the first byte and the number of repetitions are
represented in the second byte. For every eight bytes of
the compressed data, we use an extra byte referred as
code byte in which we set the corresponding bit to 1 if
there is a repetition. So if a bit is 0 in the code byte, only
1 byte is considered in the compressed sequence and if
a bit is set to 1 in the code byte, the next 2 bytes are
considered in the compressed sequence. This is shown
in the Fig. 1.

The proposed algorithm is named as GenCodex where
x signifies the number of repetitions of a fragment

Fig. 1. Diagram to explain the algorithm

occurring consecutively in a sequence. In this paper, we
discuss about 256 repetitions occurring consecutively.
The same can be extended if the repetitions occur 128,
64, 32, 16 times etc.

Algorithm 1 GenCodex Algorithm for Compression
Input: Original DNA sequence (Base pairs: A, C, G,

T).
Output: Compressed Sequence along with Code-bytes.

Phase 1:
I. Divide the sequence into fragments consisting of 4
characters each.
II. Assign unique two bit number to each of the
character (A=00, C=01, G=10, T=11).
Phase 2:
III. If consecutive fragments are not same, then we
represent the fragment with its 8-bit representation (1
byte) itself.
IV. If the fragment is repeating two or more times
consecutively, then we represent that fragment using
2 bytes and set the corresponding bit in the Code byte.
V. Repeat the same process until the end of the
sequence.
VI. Output the compressed sequence along with the
code bytes that are used to represent the compressed
sequence.

Best Case: Consider an input sequence consisting
of 4080 characters where each fragment is repeating
255 times consecutively. Since each fragment in the
compressed sequence requires 2 bytes, we need a total
of 8 bytes i.e., 64 bits for the compressed data and one



Algorithm GENBIT DNABIT GenCodex
Best Case 1.125 1.04 0.017
Average
Case

1.727 1.53 1.42

Worst Case 2.238 1.58 2.25

TABLE I
COMPRESSION RATIOS FOR DIFFERENT ALGORITHMS

(IN BITS/BYTES)

byte (8 bits) for the code byte used for this compressed
data. So a total of 72 bits are required to represent the
compressed data.

Compression ratio = Number of bits / total number of
bytes = 72 / 4080 = 0.017 bits/bytes.

Average Case: The repetitions of each fragment range
from 0 to 255. A detailed analysis on DNA sequences
reveals that a fragment repeating for 2 or 4 times is more
common than a fragment repeating for 255 times. So,
for the average case analysis, probabilities are assigned
suitably for each pattern. The compression ratio is 1.42
bits/bytes.

Worst Case: Consider an input sequence of length 32
bytes where no fragment is repeating. A total of 72 bits
are needed for representing the compressed data.

Compression ratio = Number of bits / total number of
bytes = 72 / 32 = 2.25.

The compression ratios with different algorithms for
the best, average and worst cases are shown in the Table
I.

IV. IMPLEMENTATION

Serial Implementation: In the first phase, each char-
acter is read from the file and is allocated two bits.
By using the bit-wise shift operations, four characters
are encoded into a single byte instead of four bytes.
In the second phase, the fragments are allocated either
a single byte or two bytes according to the number of
repetitions in the input sequence. But, there is a special
case wherein we always set the 8th bit in an code byte
to 0. As described earlier, there is one code byte for
every 8 bytes of compressed data. Setting the 8th bit
in the code byte to 1 implies that there is a repetition
in the 8th and 9th bytes of the sequence and we need
to allocate two bytes (occupying 8th and 9th bytes) in
the compressed sequence, but this 9th byte corresponds
to second code byte which is already allocated. In this
case, the 8th bit in the code byte is set to zero and the
8th byte in the compressed sequence represents just the
8-bit representation of the fragment. The process repeats
from the 9th byte onwards.

Since the input sequences are huge in size and the
chunks of fragments are independent of each other,
there is a scope for parallelization.

Parallel implementation:
The proposed algorithm has been implemented on

multi-cores as well as on GPUs.

A. Multi-Core:

The algorithm is implemented using OpenMP on
multi-core. The input sequence is distributed among
the cores available and each core finds the repeated
fragments and compresses the data allocating the bytes
accordingly. The compressed sequence is stored in a
buffer and is written into an output file.

B. GPUs:

The algorithm is implemented on GPUs using CUDA.
The steps involved are as follows:

1) The resultant output array from the phase 1 is
copied into the global memory of GPU from the
CPU host memory.

2) The kernel is launched with the number of threads
and the blocks varying according to the size of the
given input sequence.

3) Each thread finds the repetitions and stores the
result in a buffer in the global memory.

4) After all the threads finish their job, this buffer is
copied from global memory to host memory.

5) From this, the compressed data is finally written
to an output file which is done sequentially.

V. EXPERIMENTAL SETUP

The serial code was run on Intel(R) Pentium(R) Dual
core 2.20 GHz processor with 4GB RAM on Ubuntu
10.04 LTS. The parallel code was run on Lonestar
supercomputer(TACC) which has over 22,000 cores with
QDR InfiniBand networking (40Mb/s, sub-10us latency).
Each core runs at 3.3 GHz (Intel Xeon, 12 MB L3 cache)
and has 24 GB, 1333 MHz RAM per 12-core node.
NVIDIA Tesla M2070 card with 448 cores and 6 GB
global/device memory was used for GPU runs.

The data-sets used for the experiments are taken from
GenBank (ftp://ftp.ncbi.nlm.nih.gov/genbank). This is a
publicly available repository for DNA sequences. These
sequences used in the experiments size upto 1.43 GB.

SIMD (Single Instruction Multiple Data) was used
while parallelizing the code. The optimization flag O3
was used while compiling the code. The algorithm was
implemented on multi-cores using 12 threads.



DNA Se-
quence

Input
size
(in
Bytes)

Gen-
Compress

DNA
Com-
press

Genbit GenCodex

HSCOM
T2

1700 436 416 392 377

HUMCY
C1A

2206 560 540 516 496

HSU37
106

2256 573 561 546 528

HSGTRH 3938 995 967 918 889
HUMGA
LK1A

7086 1703 1708 1691 1629

HSU01
102

4280 1035 1052 986 950

HSC1I
NHIB

16309 3789 3960 3575 3465

HSCST4 3489 869 842 832 807
HUMA1
ATP

4786 1200 1171 1110 1065

HSTNT2 8657 2052 2049 2038 1973
HUMRB
PA

8682 2143 2116 2070 2000

HUMHS
KPQZ

2334 619 591 564 544

HUMRET
BLAS

175019 40183 41688 39059 37770

HUMTB
GA

6275 1594 1541 1486 1441

HSAT3 13347 3189 3250 2987 2892
D87675 285457 66649 68519 64537 62384

TABLE II
SIZE OF THE COMPRESSED SEQUENCE FOR DIFFERENT

ALGORITHMS (IN BYTES)

VI. RESULTS

The serial and parallel implementations of the al-
gorithm were evaluated on data-sets of different sizes.
We noticed that our algorithm performs better if the
consecutive repetitions are more (upto 255 repetitions).
Table II shows the compressed size in bytes for all the
algorithms using different data-sets.

The compression ratio remains same for both the serial
and parallel versions of our algorithm. We observed
that the compression ratio of our algorithm is good
when there are more repetitions. Table III shows the
compression ratios in terms of bits/byte for different
algorithms.

The parallel implementation outperformed the serial
implementation in terms of the throughput (time taken
to compute the data) for all the data-sets. The parallel
version achieves a speedup of upto 11 on a 12-core
M2070 card and upto 23 on M2070 GPUs for the data-
sets used in our experiment. The results are shown in

DNA Se-
quence

Input
Size
(KB)

Gen-
Compress

DNA
Com-
press

Genbit GenCodex

HSCOM
T2

1.7 2.05 1.95 1.84 1.77

HUMCY
C1A

2.2 2.03 1.95 1.87 1.79

HSU37
106

2.25 2.03 1.98 1.93 1.87

HSGTRH 3.93 2.02 1.96 1.86 1.8
HUMGA
LK1A

7 1.92 1.92 1.90 1.83

HSU01
102

4.2 1.93 1.96 1.84 1.77

HSC1I
NHIB

16.309 1.85 1.94 1.75 1.69

HSCST4 3.4 2 1.93 1.9 1.85
HUMA1
ATP

4.786 2 1.95 1.85 1.78

HSTNT2 8.6 1.9 1.89 1.88 1.82
HUMR
BPA

8.682 1.97 1.94 1.90 1.84

HUMHS
KPQZ

2.3 2.12 2.02 1.93 1.86

HUMRET
BLAS

175.019 1.83 1.90 1.78 1.7

HUMT
BGA

6.275 2.03 1.96 1.89 1.83

HSAT3 13.34 1.91 1.94 1.79 1.73
D87675 285.457 1.86 1.92 1.81 1.74

TABLE III
COMPRESSION RATIOS FOR DIFFERENT DATA-SETS(IN

BITS/BYTES)

the Fig. 2. The experiments show that the algorithm
scales well on GPUs and works better even for the huge
sequences.

We observe that as the data size increases, GPUs
perform better. This can be observed from the Table IV.
This scalability is achieved because the work-load on
the threads increases as the data-size increases on the
multi-core.

VII. CONCLUSIONS AND FUTURE WORK

A new compression algorithm is proposed to compress
the DNA sequences. The main focus was on the through-
put along with the compression ratio. As the number of
consecutive repeats increases, the algorithm achieves the
best compression. If the fragments are repeating only
twice or there are no repetitions then the algorithm may
not perform better. The compression ratio remains same
for both the serial and parallel versions. We noticed
a very good improvement in the throughput when the
algorithm was implemented on multi-cores and GPUs.



Fig. 2. Speedup on multi-cores and GPUs

Size of the
Data

Sequential Multi-core GPU

175019 0.276 0.028 0.059
285457 0.456 0.047 0.056
44804864 8.682 1.97 1.94
89609728 141.401 13.7 10.573
179219456 283.237 27.44 17.355
358438912 567.532 57.225 30.268
716877824 1130.988 110.88 52.633
1433755648 2272.355 219.911 102.601

TABLE IV
TIMINGS(IN MILLISECONDS) ON MULTI-CORE AND

GPUS

We observed a speedup of 11 on multi-cores and 23
on GPUs. Experiments showed us a good scalability on
GPUs for the standard data-sets. The results show that
our method achieves a good compression ratio along with
better throughput compared to other existing methods.

The proposed algorithm can be extended to RNA
sequences for compression. It also helps to calculate
phylogeny. The GPU implementation can be used to
solve the multiple-sequence alignment problem. A half-
byte can be used instead of a full code-byte in order to
save the space consumed by the extra code-byte when
there are no repetitions.

ACKNOWLEDGMENT

We would like to dedicate this work to founder
Chancellor of SSSIHL, Bhagawan Sri Sathya Sai Baba.
Without His grace, this work would have remained a
dream for us. This work was partially supported by
a NVIDIA grant under professor partnership program
and the Extreme Science and Engineering Discovery

Environment(XSEDE), which is supported by National
Science foundation grant number OCI-1053575.

REFERENCES

[1] TC Bell et al. Prentice Hall, 1990.
[2] A Grumbach & F Tahi. Compression of dna sequences. In Pro-

ceedings of the IEEE Data Compression Conference, Snowbird,
UT, USA., March 30April 2. 1993.

[3] Ming Li Xin Chen, Sam Kwong. A compression algorithm for
dna sequences. In Proceedings of the Fourth Annual Interna-
tional Conference on Computational Molecular Biology, Tokyo,
Japan, April 8-11, 2000.

[4] Bin Ma Xin Chen 1, Ming Li and John Tromp. Dnacompress:
fast and effective dna sequence compression. volume 18, pages
1696–1698, 2002.

[5] P Raja Rajeswari & Dr Allam AppaRao. Dnabit compress
genome compression algorithm. In Bioinformation, volume 5,
pages 350–360, 2011.

[6] P Raja Rajeswari & Dr Allam AppaRao. Genbit compress
- algorithm for repetitive and non repetitive dna sequences.
In International Journal of Computer Science and Information
Technology, volume 2, pages 25–29, 2010.

[7] Sadakane K. Matsumoto, T. and H Imai. Biological sequence
compression algorithms. In Genome Informatics Workshop,
pages 43–52. Universal Academy Press, 2002.

[8] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. In IEEE Trans. Inform. Theory, volume 23, pages
337–343, 1977.


